純橡膠的橡膠制品往往難以滿足實際使用需要,多數(shù)橡膠制品需要使用骨架材料作為主要受力部分復合制造,骨架材料同時也對橡膠制品在使用中形狀的穩(wěn)定起著重要作用。橡膠與骨架材料的牢固結(jié)合,不僅可以保護骨架材料,骨架材料的增強作用也才能得到充分的發(fā)揮。
橡膠制品對骨架材料的要求各異,以材質(zhì)分主要有金屬、天然纖維和合成纖維,以結(jié)構(gòu)分主要有帆布、繩、簾線等。不同的復合制品應選擇不同的黏合劑。黏合劑的種類如表1.8.1-26所示。
注a:《國家鼓勵的有毒有害原料(產(chǎn)品)替代品目錄(2016年版)》(工信部聯(lián)節(jié)〔2016〕398號)將用于輪胎簾子布、橡膠用輸送帶帆布等浸漬處理與用于各類線繩的浸漬處理的酚醛樹脂(RFL)浸漬劑的替代品簾帆布NF浸漬劑(主要成分六亞甲基四胺絡合物(RH)和六甲氧基甲基密胺的縮合物)、無溶劑纖維線繩浸漬劑(主要成分多亞甲基多苯基多異氰酸酯(聚合MDI)、聚氨酯、液體橡膠(HTPB))列入研發(fā)類目錄,其中無溶劑纖維線繩浸漬劑當前有效的為聚氨酯水分散液或聚氨酯乳液,羥甲基化改性、氨基化改性木質(zhì)素也是一個可能的重要方向。
骨架材料的表面處理及與橡膠基質(zhì)的粘合是十分重要的問題。在過去的幾十年里,人們對橡膠粘合機理進行了很多研究,但至今尚沒有達成統(tǒng)一的認識。對橡膠與骨架材料粘合機理的研究主要有以下幾種:
①吸附理論
吸附理論是為流行的粘合理論。這種理論認為粘接物和被粘物之間是通過吸附作用粘接在一起的。粘合力主要是由粘合界面附近的粘合體系分子或是原子相互吸附,產(chǎn)生范德華力而粘合在一起的。粘合的過程主要分為兩個方面,首先,黏合劑分子通過分子運動,遷移到被粘物的分子表面,加壓和高溫有利于該過程的進行;其次,當分子運動到被粘物表面達到足夠小的距離時,范德華力就開始起作用,并隨著距離的減少逐漸增大。吸附理論將粘合看作是一個以分子間力為基礎的表面過程,該理論認為分子間作用力是粘合力的主要形式之一。但是吸附理論并不是普遍適用的,不能解釋橡膠與鍍銅鋼絲的直接粘合體系的粘合。
②機械理論
機械理論認為粘合是通過黏合劑滲透到被粘物粗糙的表面,在被粘物的表面生成鉤合、錨合等機械力使得黏合劑與被粘物結(jié)合在一起。黏合劑粘接經(jīng)過表面處理的材料的效果比表面光滑的材料的效果要好的多。但是,機械理論無法解釋表面光滑的材料,如玻璃、金屬的粘接。
③化學鍵理論
化學鍵理論是目前系統(tǒng)、古老的理論?;瘜W鍵理論是指兩相材料之間通過在粘合界面處形成化學鍵獲得的牢固的粘合?;瘜W鍵力遠遠大于分子間作用力,能夠產(chǎn)生很好的粘合強度。化學鍵理論已經(jīng)被多種實驗事實所證實,如橡膠與鍍銅鋼絲粘合。
④擴散理論
擴散理論又稱為分子滲透理論,是指兩相材料的相互粘接是通過分子擴散的作用完成的,擴散使得兩相界面相差致密的粘合層,進而將兩相材料結(jié)合起來。這種擴散作用是在粘合界面處相互滲透進行的。擴散導致兩相材料之間沒有明顯的粘合界面,只有一個過渡區(qū)的存在,粘合體系能夠借助擴散獲得良好的粘合性能。該理論能夠很好的解釋具有良好相容性的高分子之間的粘合,但是無法解釋橡膠-金屬之間的粘合。
⑤靜電理論
靜電理論又稱雙電層理論,是指在干燥的環(huán)境下,兩相材料在界面處有放電和發(fā)光的現(xiàn)象。但是很多科學家認為這種理論并沒有直指粘合的本質(zhì)。而且通過靜電產(chǎn)生的粘合力只占有總粘合力的很少一部分,對粘合的作用是微不足道的。另外,靜電理論無法解釋屬性相同或相近兩相材料之間的粘合。
橡膠與金屬的粘合早可以追溯到1850年,主要經(jīng)歷了硬質(zhì)橡膠法、酚醛樹脂法、鍍黃銅法或黃銅法、鹵化橡膠法等。目前,在橡膠制品中橡膠與金屬粘合的方法主要是在橡膠的硫化過程中將橡膠與金屬粘接起來。至今,國內(nèi)外已開發(fā)出多種性能優(yōu)異的膠粘劑, 如Chemlok、Tylok、Metalok、Thixon 、Chemosil(漢高)系列、Megum(麥固姆)系列等。特別是Chemlok系列膠粘劑,在橡膠工業(yè)黏合領域有較廣泛的應用。
①硬質(zhì)橡膠法是人們在1860年前后發(fā)現(xiàn)的,主要是在金屬的表面貼一層硫黃用量較高硬質(zhì)橡膠,然后在其表面粘上復合材料進行硫化即可。這種方法至今在大型膠輥中還具有廣泛的應用。雖然這種方法制造的產(chǎn)品有著較好的粘合效果,但是使用溫度一般不能超過70℃。而且這種工藝需要較長時間的硫化,與銅或銅合金不能很好的粘合。
②鍍黃銅法是一種不需要黏合劑,就可以實現(xiàn)橡膠與金屬粘合的一種粘合方法,是英國查理斯等人在1862年對橡膠與鍍黃銅粘合研究之后才逐漸發(fā)展起來的。初這種方法主要是應用在發(fā)動機的減震橡膠上。現(xiàn)在在輪胎的鋼絲簾線上也在采用這種方法。鍍黃銅法主要的特點就是在硫化溫度下,橡膠與鍍銅鋼絲的粘合與橡膠的硫化同時發(fā)生,而且不需要在鋼絲的表面涂布黏合劑。其缺點主要是受到鋼絲的表面性質(zhì)決定的,而且有些大型制品的表面鍍銅困難。
③酚醛樹脂法是在第二次世界大戰(zhàn)后發(fā)展起來的。酚醛樹脂法橡膠與金屬的粘合被認作是通過金屬表面的化學吸附發(fā)生的,即粘結(jié)物與被粘物之間發(fā)生粘合時,金屬鍵或離子鍵形成鍵合,發(fā)生特殊的反應。這種吸附一般認為是酚類有機化合物的絡合反應或是類似的反應。
④鹵化橡膠法是雷蒙德?瓦納在1932年對溴化橡膠的粘合實驗進行了研究,而發(fā)展起來的。鹵化橡膠粘合體系被認為是有著良好的熱可塑性,并且隨著硫化自身不發(fā)生固化反應。顯著的優(yōu)點是其可以以液體的狀態(tài)長時間貯存,使用范圍廣泛。
⑤橡膠與金屬粘合的直接粘合法
橡膠與金屬的直接粘合法是指橡膠膠料在硫化過程中,橡膠與金屬在界面處實現(xiàn)粘合的方法。目前,常用的直接粘合體系主要有間-甲-白粘合體系、有機鈷鹽、木質(zhì)素、有機鈷鹽/白炭黑及三嗪粘合體系等。
到目前為止,在橡膠與鍍銅鋼絲粘合過程中產(chǎn)生的硫化層如何增強橡膠與鍍銅鋼絲之間的粘合強度仍然不是很清楚,普遍接受的觀點是在橡膠與鍍銅鋼絲的粘合過程中,在粘合界面處形成CuxS層,x值為1.90~1.97。有機鈷鹽促進橡膠與鍍銅鋼絲粘合如圖1.8.1-1所示。
橡膠與鍍銅鋼絲的粘合過程主要經(jīng)歷粘合界面的形成、穩(wěn)定和粘合三個過程[1]。在橡膠的硫化前,膠料與鍍銅鋼絲之間只是物理上的接觸,形成單調(diào)的接觸界面。隨著橡膠的硫化,橡膠中的硫黃向鍍銅鋼絲遷移,在橡膠與鍍銅鋼絲的界面處形成非計量系數(shù)的CuxS,并且形成的CuxS向橡膠層遷移,與硫化的橡膠形成互鎖的結(jié)構(gòu),提高了橡膠與鍍銅鋼絲的粘合。
在橡膠與鍍銅鋼絲的粘合過程中,橡膠硫化與粘合界面形成的反應是相互協(xié)同、相互促進的。橡膠與硫黃的反應歷程:
橡膠與鍍銅鋼絲的粘合過程:
兩種反應的協(xié)同進行是由硫黃的用量、CuxS的產(chǎn)生速率和黃銅層的厚度決定的。在膠料配方中必須要加大硫黃的用量,以滿足橡膠的硫化過程和粘合過程中硫黃的消耗。同時要在膠料配方中要配用遲效性促進劑,防止硫化反應過早進行,影響粘合界面的生成。
Van Ooij[2]在早期的研究中指出,橡膠與鍍銅鋼絲之間的粘合主要是通過CuxS層的建立,而且其粘合強度取決于硫化物層的厚度,即取決于鍍黃銅層中銅的含量。隨著橡膠硫化的進行CuxS層逐漸向橡膠層增長,與膠料形成強烈的機械互鎖結(jié)構(gòu)。Hotaka等人[3]通過在橡膠硫化的過程中,在橡膠與鍍銅鋼絲的粘合界面處放入一張濾紙,將橡膠與粘合界面分開。研究發(fā)現(xiàn)在硫化之前,在鋼絲的表面有CuS的形成,隨著硫化的進行,CuS逐漸脫硫形成具有粘合能力的CuxS;他們還發(fā)現(xiàn)在產(chǎn)生CuxS的過程中,會有FeS和ZnS的生成,這兩者對與粘合是沒有貢獻的,但是ZnS對于保持CuxS的粘合效果有著巨大的貢獻。
另一方面,有相關(guān)文獻報道,在橡膠的硫化交聯(lián)的過程中,在粘合界面處能夠形成Cu-Sy-R化學鍵,增強了橡膠與鍍銅鋼絲之間的粘合強度。在粘合的過程中,橡膠的硫化與粘合界面的形成過程中,都有硫黃的參與,因此橡膠的硫化與粘合界面的形成必須是同步進行的。如果硫化時間過短,橡膠的硫化過程中,硫黃被過多的消耗,導致粘合過程中的硫黃的量減少,降低了粘合強度;同樣的,如果硫化過程中粘合消耗的硫黃過多,橡膠就有可能存在硫化不熟的現(xiàn)象。因此,與鍍銅鋼絲粘合的膠料要有較長的硫化時間,確保橡膠的硫化與粘合界面的形成過程同步進行 [4]。
A、間-甲-白直接黏合體系
間-甲-白直接黏合體系是由亞甲基的給予體HMMM(六甲氧基甲基密胺)或甲醛給予體HMT(六亞甲基四胺)、間苯二酚單體或樹脂型的間苯二酚給予體和白炭黑組成,又被稱作HRH粘合體系。HRH粘合體系適用于多種骨架材料的粘合,如合成纖維、天然纖維及鍍黃銅、鍍銅等。典型的的HRH粘合體系的組成是間苯二酚2.5~3.8份,HMT1.5~2.5份,白炭黑15份[5]。其粘合機理被認為是間苯二酚作為甲醛或是亞甲基的接受體,在硫化溫度下,與亞甲基發(fā)生低聚縮合,形成酚醛型粘合樹脂,該樹脂能夠繼續(xù)發(fā)生反應。
當橡膠與金屬表面進行粘合的時候,酚醛樹脂中含有的羥基和羥甲基有著較強的極性,能夠與金屬表面的極性分子產(chǎn)生鍵合,從而將橡膠與金屬粘接起來[6]。組分中的白炭黑作為一種粘合增進劑,而且白炭黑表面的硅羥基結(jié)構(gòu)能夠吸附橡膠基體中的自由水,減少了水對粘合界面的破壞,同時白炭黑的酸性表面能夠延遲橡膠的硫化時間,使得橡膠能夠保持較長時間的流動,增大了橡膠與金屬的接觸面積,提高了橡膠與金屬的粘合[7~8]。
HRH粘合體系的主要優(yōu)點是可以控制橡膠與骨架材料粘合反應的歷程,使得橡膠的硫化、橡膠與骨架材料之間的粘合同步發(fā)生。但是,由于間-甲-白體系有著較強的極性,在橡膠基體中較難分散,容易噴霜;高溫時,間苯二酚升華,有刺激型氣味,危害人體健康,對環(huán)境有一定的污染[9]。為了解決這一問題,國內(nèi)外研究了一些新型的黏合劑,如RE(間苯二酚與乙醛的低聚物,摩爾比為2:1)、RA-65(65%的六甲氧基甲基蜜胺HMMM與加載體復配而成)、RS(間苯二酚與硬脂酸的共融物,摩爾比1:1)、RS-11、R-80、RC等。其中RA-65的粘合效果較好,而且適用于天然橡膠、聚丁二烯橡膠和丁苯橡膠與鍍銅鋼絲簾線及各種裸露鋼絲的粘合[10];由黏合劑A和多元酚縮合制得的預縮聚樹脂型的新型黏合劑AB-30,含有大量的甲氧基、酚基和羥甲基結(jié)構(gòu),硫化時,黏合劑AB-30能夠與橡膠發(fā)生交聯(lián),形成三維網(wǎng)絡結(jié)構(gòu),遷移到材料表面,有著良好的粘合效果[11]。
間-甲-白體系粘接強度比鈷鹽體系高,附膠量高二級,但耐老化性能偏低。
B、有機鈷鹽增粘體系
有機鈷鹽是橡膠與鍍銅鋼絲或是鋼絲簾線粘合的專用粘合增進劑,可以單獨用于橡膠與鍍銅鋼絲的粘合。目前,國內(nèi)外常用的有機鈷鹽主要有硼酰化鈷、葵酸鈷、硬脂酸鈷、環(huán)烷酸鈷等。在有機鈷鹽的增粘過程中,起粘合作用的主要是鈷離子。
關(guān)于有機鈷鹽增進粘合的機理,較為普遍的觀點是有機鈷鹽的加入能夠促進活性產(chǎn)物CuxS的生成,調(diào)整CuxS的生成速率。不同有機鈷鹽的調(diào)節(jié)能力是不同的,各種有機鈷鹽的反應活性為:硼酰化鈷>新癸酸鈷>環(huán)烷酸鈷>硬脂酸鈷[12]。在鈷鹽體系黏合劑中,硼?;捄托鹿锼徕捰捎阝挼馁|(zhì)量分數(shù)相對比較高,有著較高的活性,得到了廣泛的應用,特別是硼?;掃€具有良好的防老化效果[13]。一般來說,在100份的橡膠中,金屬鈷的含量應該為0.3份左右[14]。若鈷離子的量過大,會加速形成大量的非活性的硫化銅,粘合強度下降,而且會加速橡膠老化。如果加入的鈷離子量過小,在粘合界面處很難生成硫化亞銅層,使得粘合性能下降[15~17]。
鍍層中銅鋅的比例也是決定粘合效果的重要因素。金屬銅是相對比較活潑的金屬,如果使用純金屬銅,反應非常劇烈,迅速產(chǎn)生硫化亞銅,難以與橡膠的硫化速率匹配。鍍層中的鋅能夠有效抑制銅的活性,使得生成硫化亞銅的速率降低;同時,鋅能夠與硫黃發(fā)生反應形成硫化鋅,也起到增強粘合效果的作用[18];后,鋅能夠與鋼絲形成原電池的形式,有效的保護了鋼絲不被腐蝕[19]。
鈷鹽黏合體系對天然橡膠佳,異戊橡膠和順丁橡膠其次,丁基橡膠、丁腈橡膠和氯丁橡膠較差。
C、木質(zhì)素黏合體系